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Abstract. An analytic function f with Schwarzian norm ‖Sf‖ ≤ 2(1+δ2) is shown

to satisfy a pair of two-point distortion conditions, one giving a lower bound and the
other an upper bound for the deviation. Conversely, each of these conditions is found

to imply that ‖Sf‖ ≤ 2(1 + δ2). Analogues of the lower bound are also developed
for curves in R

n and for canonical lifts of harmonic mappings to minimal surfaces.

§1. Introduction.

A well known theorem of Nehari [16] states that if the Schwarzian derivative
Sf = (f ′′/f ′)′ − 1

2
(f ′′/f ′)2 of an analytic locally univalent function f satisfies the

inequality

|Sf(z)| ≤ 2

(1 − |z|2)2 (1)

for all points z in the unit disk D, then f is univalent in D. The result is best
possible, since for any δ > 0 the weaker condition

|Sf(z)| ≤ 2(1 + δ2)

(1 − |z|2)2 , z ∈ D , (2)

admits functions f with infinite valence. However, such functions are uniformly
locally univalent in the sense that any two distinct points where f assumes equal
values are uniformly separated in the hyperbolic metric

d(α, β) =
1

2
log

1 + ρ(α, β)

1 − ρ(α, β)
, where ρ(α, β) =

∣∣∣∣
α − β

1 − αβ

∣∣∣∣ .

More precisely, if f satisfies the inequality (2) for some constant δ > 0, then
d(α, β) ≥ π/δ for any pair of points α and β in D where f(α) = f(β) but α 6= β.
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Moreover, the separation constant π/δ is best possible. This result is essentially
due to B. Schwarz [17]. A proof and further discussion can be found in [4]. Gen-
eralizations to Nehari functions other than p(x) = (1 − x2)−2 are given in [4] and
[5].

The Schwarzian norm of an analytic locally univalent function f is defined by

‖Sf‖ = sup
z∈D

(1 − |z|2)2|Sf(z)| .

Thus Nehari’s theorem says that f is univalent if ‖Sf‖ ≤ 2, whereas the theorem of
Schwarz says it is uniformly locally univalent if ‖Sf‖ ≤ 2(1+ δ2) for some constant
δ > 0.

Chuaqui and Pommerenke [9] gave a quantitative version of Nehari’s theorem by
showing that the condition ‖Sf‖ ≤ 2 implies that f has the two-point distortion
property

∆f (α, β) =
|f(α) − f(β)|

{(1 − |α|2)|f ′(α)|}1/2 {(1 − |β|2)|f ′(β)|}1/2
≥ d(α, β) (3)

for all points α, β ∈ D. Conversely, they found that if f satisfies (3), then ‖Sf‖ ≤ 2.
Thus the distortion property (3) actually characterizes functions in the Nehari class.

In the present paper we show more generally that for any δ > 0 the analytic
functions with Schwarzian norm ‖Sf‖ ≤ 2(1 + δ2) are characterized by the local
distortion property

∆f (α, β) ≥ 1

δ
sin(δ d(α, β)) , α, β ∈ D , d(α, β) ≤ π

δ
. (4)

Note that the lower bound equals zero, as it must, when d(α, β) = 0 or π/δ. Observe
also that as δ → 0, the inequality (4) reduces to (3).

We also show that for any constant δ > 0 an analytic function f has Schwarzian
norm ‖Sf‖ ≤ 2(1 + δ2) if and only if

∆f (α, β) ≤ 1√
2 + δ2

sinh
(√

2 + δ2 d(α, β)
)
, α, β ∈ D . (5)

As a corollary, we can draw the rather surprising conclusion that for any constant
δ > 0 and any analytic function f , the upper bound (5) holds for all points α, β ∈ D

if and only if the lower bound (4) holds for all α, β ∈ D with d(α, β) ≤ π/δ. Also,

an analytic function f satisfies ∆f (α, β) ≤ 1√
2

sinh
(√

2 d(α, β)
)

for all α, β ∈ D if

and only if f is univalent and ‖Sf‖ ≤ 2.
The final section of the paper develops a generalization of the lower bound (4)

for canonical lifts of harmonic mappings to minimal surfaces.

§2. A basic lemma.

The proofs make essential use of a comparison lemma for solutions of differential
equations, which we now state.
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Comparison Lemma. Let Q(x) be continuous and Q(x) > 0 for x ∈ [0, 1). Let
v(x) and w(x) be defined as the solutions of

v′′(x) + Q(x)v(x) = 0 , v(0) = 0 , v′(0) = 1

and

w′′(x) − Q(x)w(x) = 0 , w(0) = 0 , w′(0) = 1 ,

respectively. Suppose that v(x) > 0 in an interval (0, ξ), where 0 < ξ ≤ 1. Let p(z)
be analytic and satisfy |p(z)| ≤ Q(|z|) for all z ∈ D. Then the solution of

u′′(z) + p(z)u(z) = 0 , u(0) = 0 , u′(0) = 1

satisfies the inequalities

v(|z|) ≤ |u(z)| for |z| < ξ , |u(z)| ≤ w(|z|) , for all z ∈ D .

It is clear that w(x) > 0 for all x ∈ (0, 1), since the differential equation implies
that w′′(x) ≥ 0. On the other hand, v′′(x) ≤ 0 and so it is possible that v(x) = 0
for some x ∈ (0, 1).

The upper inequality |u(z)| ≤ w(|z|) was proved and applied by Essén and Keogh
[12]. Herold [13] had previously obtained a more general result for differential
equations of higher order. The lower inequality is essentially contained in [8], and
a proof is sketched in [9]. For completeness we include detailed proofs of both
inequalities here.

Proof of comparison lemma. After rotation, the problem reduces to proving the
inequalities for points z in the real interval 0 ≤ z < 1. (Let U(r) = u(reiθ) for
fixed θ.) To prove the upper inequality |u(x)| ≤ w(x) for 0 ≤ x < 1, we convert
the differential equation and initial conditions to an integral equation. Integration
gives

u′(x) = 1 −
∫ x

0

p(t)u(t) dt and

u(x) = x −
∫ x

0

∫ y

0

p(t)u(t) dt dy .

Reversing the order of integration, we have

u(x) = x −
∫ x

0

(x − t)p(t)u(t) dt , so that

|u(x)| ≤ x +

∫ x

0

(x − t)Q(t)|u(t)| dt , 0 ≤ x < 1 .
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A similar analysis gives

w(x) = x +

∫ x

0

(x − t)Q(t)w(t) dt , 0 ≤ x < 1 .

Subtraction now shows that h(x) = |u(x)| − w(x) satisfies

h(x) ≤
∫ x

0

(x − t)Q(t)h(t) dt , 0 ≤ x < 1 .

To infer that h(x) ≤ 0, fix an arbitrary point x0 ∈ (0, 1) and let

s0 = sup{s ∈ [0, 1) : h(x) ≤ 0 for all x ∈ [0, s]} .

If s0 ≥ x0, then h(x) ≤ 0 in (0, x0) and the proof is finished, since x0 was chosen
arbitrarily in (0, 1). If s0 < x0, let M be the maximum value of Q(x) for 0 ≤ x ≤ x0

and choose x1 ∈ (s0, x0) such that M(x1 − s0) < 1. Let µ be the maximum value
of h(x) for s0 ≤ x ≤ x1, so that µ = h(x2) > 0 for some x2 ∈ (s0, x1]. Then

µ = h(x2) ≤
∫ x2

0

(x2 − t)Q(t)h(t) dt ≤
∫ x2

s0

(x2 − t)Q(t)h(t) dt

≤
∫ x2

s0

(x2 − t)Q(t)µ dt ≤ M(x1 − s0)µ < µ ,

a contradiction. This shows that s0 ≥ x0, which proves that h(x) ≤ 0, or w(x) ≤
|u(x)| in [0, x0), hence in [0, 1). Thus w(|z|) ≤ |u(z)| for all z ∈ D.

Now consider the lower bound v(|z|) ≤ |u(z)| for |z| < ξ. Again it suffices to
carry out the proof for z ∈ [0, 1). Let ϕ(x) = |u(x)|, so that ϕ2 = uu, and calculate

ϕ(x)ϕ′(x) = 1

2

[
u′(x)u(x) + u(x)u′(x)

]
= Re

{
u′(x)u(x)

}
.

Hence |ϕ′(x)| ≤ |u′(x)| wherever u(x) 6= 0. Another differentiation gives

ϕ(x)ϕ′′(x) + ϕ′(x)
2

= Re
{
u′′(x)u(x)

}
+ |u′(x)|2 ,

from which we infer that

ϕ(x)ϕ′′(x) ≥ Re
{

u′′(x)u(x)
}

= −Re{p(x)}ϕ(x)
2
,

in view of the differential equation for u. Consequently, since ϕ(x) = |u(x)| ≥ 0
and |p(x)| ≤ Q(x), we arrive at the differential inequality

ϕ′′(x) + Q(x)ϕ(x) ≥ 0 , 0 ≤ x < 1 .

On the other hand, the function v satisfies the differential equation

v′′(x) + Q(x)v(x) = 0 , 0 ≤ x < 1 .

Since v(0) = ϕ(0) = 0 and v′(0) = ϕ′(0) > 0, it now follows from the Sturm
comparison theorem that ϕ(x) ≥ v(x) up to the first zero of v. Thus |u(x)| ≥ v(x)
for 0 ≤ x < ξ, and so |u(z)| ≥ v(|z|) for |z| < ξ. �

§3. Distortion of analytic functions.
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We turn now to the main result of this paper. It will be convenient to employ
the notation ∆f (α, β) defined by (3), where f is analytic and locally univalent in
the disk and α, β ∈ D. It is important to observe that this quantity is invari-
ant under both precomposition and postcomposition with Möbius transformations.
Specifically, if σ is any Möbius automorphism of the disk, then

∆f◦σ(α, β) = ∆f (σ(α), σ(β)) , α, β ∈ D ,

as can be seen by direct calculation using the identity

|σ′(z)|
1 − |σ(z)|2 =

1

1 − |z|2 , z ∈ D . (6)

To show that

∆T◦f (α, β) = ∆f (α, β)

for every Möbius transformation T , it suffices to verify by simple calculation that
∆1/f (α, β) = ∆f (α, β), since the relation clearly holds for every affine mapping T .
Now for the main theorem.

Theorem 1. Let f be analytic and locally univalent in D and suppose that ‖Sf‖ ≤
2(1 + δ2) for some δ > 0. Then

∆f (α, β) ≥ 1

δ
sin(δ d(α, β)) (7)

for all α, β ∈ D with hyperbolic separation d(α, β) ≤ π/δ, and

∆f (α, β) ≤ 1√
2 + δ2

sinh
(√

2 + δ2 d(α, β)
)

(8)

for all α, β ∈ D. Each of the inequalities (7) and (8) is sharp; for each pair of
points α and β in the specified range, equality occurs for some function f with
‖Sf‖ ≤ 2(1 + δ2). Equality holds in (7) precisely for f = T ◦ F ◦ σ and in (8) for
f = T ◦ G ◦ σ, where F and G are defined by

F (z) =

(
1 + z

1 − z

)iδ

and G(z) =

(
1 + z

1 − z

)√
2+δ2

, (9)

σ is the Möbius automorphism of D with σ(α) = 0 and σ(β) > 0, and T is an
arbitrary Möbius transformation. For each such function f , equality holds along the
entire (admissible portion of the) hyperbolic geodesic through α and β. Conversely,
if either inequality holds for all points α and β in the specified range, then ‖Sf‖ ≤
2(1 + δ2).
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Proof. The strategy is to establish the inequalities first in the special case where
α = 0, then to derive them in the general case by Möbius invariance. Suppose that

|Sf(z)| ≤ 2(1 + δ2)

(1 − |z|2)2 , z ∈ D ,

for some δ > 0, and assume without loss of generality that f(0) = 0 and f ′(0) = 1.
Define

g(z) = − 1

f(z)
, so that g′(z) =

f ′(z)

f(z)2
.

Then the function
u(z) = [g′(z)]−1/2 = z + c2z

2 + . . .

is analytic in D, with u(0) = 0 and u′(0) = 1, and it satisfies the differential equation

u′′ + [ 1
2
Sf ] u = 0 ,

since Sg = Sf . Define the functions v(x) and w(x) by

v′′(x) +
1 + δ2

(1 − x2)2
v(x) = 0 , v(0) = 0 , v′(0) = 1 and

w′′(x) − 1 + δ2

(1 − x2)2
w(x) = 0 , w(0) = 0 , w′(0) = 1 .

Suppose that v(x) > 0 in the interval (0, ξ), where 0 < ξ ≤ 1. Then in view of the
hypothesis that

∣∣1
2
Sf(z)

∣∣ ≤ (1 + δ2)(1− |z|2)−2 in D, we infer from the comparison
lemma that |u(z)| ≤ w(|z|) for all z ∈ D, and v(|z|) ≤ |u(z)| for all z ∈ D with
|z| < ξ.

The solutions v(x) and w(x) are

v(x) =
1

δ

√
1 − x2 sin

(
δ

2
log

1 + x

1 − x

)
, (10)

w(x) =

√
1 − x2

√
2 + δ2

sinh

(√
2 + δ2

2
log

1 + x

1 − x

)
. (11)

These explicit formulas can be found with reference to Kamke [14], or by means of
the substitution

y(t) =
v(x)√
1 − x2

, where t =
1

2
log

1 + x

1 − x
,

which reduces the first differential equation to y′′(t) + δ2y(t) = 0. Similarly, the
second equation reduces to y′′(t) − (2 + δ2)y(t) = 0 through the same substitution
with w in place of v.
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The first positive zero of v(x) occurs at the point ξ = tanh(π/δ). Since

u(z) = [g′(z)]−1/2 = f(z)[f ′(z)]−1/2 ,

the inequality |u(z)| ≥ v(|z|) obtained from the comparison lemma reduces to

|f(z)|2
|f ′(z)| ≥ 1

δ2
(1 − |z|2) sin2

(
δ

2
log

1 + |z|
1 − |z|

)
, (12)

or ∆f (0, z) ≥ 1

δ
sin (δ d(0, z)) for d(0, z) ≤ π

δ
.

Now let α and β be arbitrary points in the unit disk and define

f1(z) =
f(σ(z)) − f(α)

(1 − |α|2)f ′(α)
, where σ(z) =

z + α

1 + αz
. (13)

This function has the form f1 = T ◦f ◦σ, where T is a Möbius transformation, and
so

∆f1
(0, z) = ∆f◦σ(0, z) = ∆f (σ(0), σ(z)) = ∆f (α, σ(z)) .

On the other hand, Sf1 = S(f ◦ σ) = [(Sf) ◦ σ]σ′2 , so that

|Sf1(z)| = |Sf(σ(z))||σ′(z)|2 ≤ 2(1 + δ2)|σ′(z)|2
(1 − |σ(z)|2)2 =

2(1 + δ2)

(1 − |z|2)2 .

Since ‖Sf1‖ ≤ 2(1 + δ2) and f1(0) = 0, f ′
1(0) = 1, it follows from what has already

been proved that

∆f1
(0, z) ≥ 1

δ
sin (δ d(0, z)) , d(0, z) ≤ π

δ
.

Therefore, if z is chosen so that σ(z) = β, we have

∆f (α, β) = ∆f1
(0, z) ≥ 1

δ
sin (δ d(σ(0), σ(z))) ) =

1

δ
sin (δ d(α, β))

for d(α, β) ≤ π/δ, by the Möbius invariance of the hyperbolic metric. The proof of
the lower bound (7) is now complete.

The upper bound is derived in similar fashion. The comparison lemma gives
|u(z)| ≤ w(|z|) for all z ∈ D, which reduces to

∆f (0, z) ≤ 1√
2 + δ2

sinh
(√

2 + δ2 d(0, z)
)
.

It then follows as before that

∆f (α, β) ≤ 1√
2 + δ2

sinh
(√

2 + δ2 d(α, β)
)
, α, β ∈ D,
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by choosing z = σ−1(β). This proves (8).
In order to prove the sharpness of (7), we now show that for each pair of points

α, β ∈ D with 0 < d(α, β) < π/δ, there is a function f with ‖Sf‖ ≤ 2(1 + δ2)
such that ∆f (α, β) = 1

δ
sin(δ d(α, β)). By Möbius invariance, it is equivalent to

show that ∆F (0, b) = 1

δ sin(δ d(0, b)), where F = f ◦ σ−1 and σ is the Möbius
automorphism of the disk for which σ(α) = 0 and σ(β) = b > 0. This will be the
case if and only if SF (z) = 2(1+δ2)(1−z2)−2, which is the requirement for equality
in the comparison lemma (cf. [8]). Thus the general form of the extremal function
is f = T ◦F ◦σ, where F is a particular function (as given by (9), for instance) with
Schwarzian SF (z) = 2(1 + δ2)(1 − z2)−2, σ is the Möbius automorphism defined
above, and T is an arbitrary Möbius transformation. Similarly, for each pair of
distinct points α, β ∈ D, equality occurs in (8) precisely for functions of the form
f = T ◦ G ◦ σ, where G is a particular function (as defined by (9), for instance)
with SG(z) = −2(1 + δ2)(1− z2)−2, σ is the Möbius automorphism with σ(α) = 0
and σ(β) > 0, and T is an arbitrary Möbius transformation (cf. [12]).

Conversely, we want to show that either of the two-point distortion conditions
(7) or (8) implies the bound ‖Sf‖ ≤ 2(1 + δ2) on the Schwarzian norm. The
proofs follow an argument given by Chuaqui and Pommerenke [9] to show that the
condition (3) implies ‖Sf‖ ≤ 2. It will suffice to carry out the details only for
the condition (8), because the proof for (7) is quite similar. In view of the Möbius
invariance, no information is lost if we take α = 0. Without loss of generality, we
may assume that f(0) = 0 and f ′(0) = 1, so that

f(z) = z + a2z
2 + a3z

3 + . . . .

The condition (8) then reduces to

|f(z)|2
|f ′(z)| ≤ 1 − |z|2

2 + δ2
sinh2

(√
2 + δ2 d(0, z)

)
, z ∈ D . (14)

In order to conclude from (14) that ‖Sf‖ ≤ 2(1 + δ2), it will suffice to show that
|Sf(0)| ≤ 2(1 + δ2), because of the Möbius invariance. Indeed, for the function f1

defined by (13) we have

(1 − |z|2)2|Sf1(z)| = (1 − |σ(z)|2)2|Sf(σ(z))| ,

and so |Sf1(0)| = (1 − |α|2)2|Sf(α)|. But Sf(0) = 6(a3 − a2
2), so the problem

reduces to showing that |a3 − a2
2| ≤ 1

3
(1 + δ2). Straightforward calculations give

f(z)2

f ′(z)
= z2[1 + (a2

2 − a3)z
2 + . . . ] and

1 − |z|2
2 + δ2

sinh2
(√

2 + δ2 d(0, z)
)

= r2[1 + 1

3
(1 + δ2)r2 + . . . ] , r = |z| .
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Therefore, the inequality (14) implies

∣∣1 + (a2
2 − a3)z

2 + O(r3)
∣∣2 ≤

∣∣1 + 1

3
(1 + δ2)r2 + O(r3)

∣∣2 ,

or 1 + 2Re
{
(a2

2 − a3)z
2 + O(r3)

}
≤ 1 + 2

3
(1 + δ2)r2 + O(r3) ,

from which we infer that

Re
{
(a2

2 − a3)e
2iθ
}
≤ 1

3
(1 + δ2)

by setting z = reiθ for fixed θ and letting r → 0. Since the angle θ can be chosen
arbitrarily, we conclude that |a3 − a2

2| ≤ 1

3
(1 + δ2), as desired.

Essentially the same calculations show that if the inequality (12) holds for all
z ∈ D with d(0, z) ≤ π/δ (or equivalently for |z| ≤ tanh(π/δ)), then |Sf(0)| ≤
2(1 + δ2) and so ‖Sf‖ ≤ 2(1 + δ2). �

Similar results are obtained under the hypothesis ‖Sf‖ ≤ 2(1−δ2) for 0 < δ < 1.
Then the relevant functions v and w of the comparison lemma are obtained by
replacing δ by iδ in the formulas (10) and (11). Specifically,

v(x) =
1

δ

√
1 − x2 sinh

(
δ

2
log

1 + x

1 − x

)
,

w(x) =

√
1 − x2

√
2 − δ2

sinh

(√
2 − δ2

2
log

1 + x

1 − x

)
.

The inequalities v(|z|) ≤ |u(z)| ≤ w(|z|) now reduce to

1

δ
sinh(δ d(0, z)) ≤ ∆f (0, z) ≤ 1√

2 − δ2
sinh

(√
2 − δ2 d(0, z)

)
, z ∈ D ,

whereupon the same argument based on Möbius invariance gives

1

δ
sinh(δ d(α, β)) ≤ ∆f (α, β) ≤ 1√

2 − δ2
sinh

(√
2 − δ2 d(α, β)

)
(15)

for all α, β ∈ D. Conversely, if either of the inequalities in (15) holds for some
δ ∈ (0, 1) and for all α and β in D, calculations similar to the above lead to the
conclusion that ‖Sf‖ ≤ 2(1 − δ2).

Theorem 1 was essentially proved by D. Mej́ıa [15] and was discovered indepen-
dently in joint work by M. Chuaqui, P. Duren, and B. Osgood.

§4. Distortion of harmonic mappings.

By a similar method, the lower bound (7) can be extended to harmonic mappings,
or rather to their canonical lifts to minimal surfaces. The result will generalize
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a theorem in the paper [6] for the special case of the extremal Nehari function
p(x) = (1 − x2)−2. As in [6], we begin with a distortion theorem for curves in R

n.
Let ϕ : (−1, 1) 7→ R

n be a mapping of class C3 with ϕ′(x) 6= 0. The Ahlfors
Schwarzian of ϕ is defined by

S1ϕ =
〈ϕ′, ϕ′′′〉
|ϕ′|2 − 3

〈ϕ′, ϕ′′〉2
|ϕ′|4 +

3

2

|ϕ′′|2
|ϕ′|2 ,

where 〈· , ·〉 denotes the Euclidean inner product and |x|2 = 〈x,x〉 for x ∈ R
n. As

Ahlfors [1] observed, it is invariant under postcomposition with Möbius transfor-
mations of R

n. Chuaqui and Gevirtz [7] used it to give an injectivity criterion for
curves. Here is a special case of their theorem.

Theorem A. Let ϕ : (−1, 1) 7→ R
n be a curve of class C3 with tangent vector

ϕ′(x) 6= 0. If S1ϕ(x) ≤ 2(1 − x2)−2, then ϕ is injective.

Chuaqui and Gevirtz also showed that the arclength s = s(x) of the curve ϕ has
Schwarzian

Ss(x) = S1ϕ(x) − 1

2
|ϕ′(x)|2κ(x)2 ≤ S1ϕ(x) , (16)

where κ = κ(x) is the curvature of ϕ.
Our next theorem extends Theorem A to a criterion for uniform local injectivity,

in the manner of B. Schwarz’ extension of Nehari’s theorem. Moreover, it expresses
the local injectivity in quantitative form as a two-point distortion result analogous
to the lower bound (7) in Theorem 1. In terms of the curve ϕ(x), we define

∆ϕ(a, b) =
|ϕ(a) − ϕ(b)|

{(1 − a2)|ϕ′(a)|}1/2 {(1 − b2)|ϕ′(b)|}1/2
, a, b ∈ (−1, 1) .

We are now prepared to state the theorem.

Theorem 2. Let ϕ : (−1, 1) 7→ R
n be a curve of class C3 with ϕ′(x) 6= 0. If

S1ϕ(x) ≤ 2(1 + δ2)

(1 − x2)2
for some δ > 0 ,

then the inequality

∆ϕ(a, b) ≥ 1

δ
sin(δ d(a, b)) (17)

holds for all a, b ∈ (−1, 1) with d(a, b) ≤ π/δ.

Proof. First observe that the quantity ∆ϕ(a, b) is again Möbius invariant. If σ is
any Möbius automorphism of the disk that preserves the real segment (−1, 1), or
equivalently if σ is a Möbius automorphism with real coefficients, then

∆ϕ◦σ(a, b) = ∆ϕ(σ(a), σ(b)) , a, b ∈ (−1, 1) .
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If T is any Möbius transformation of R
n, then ∆T◦ϕ(a, b) = ∆ϕ(a, b). The proofs

for curves are essentially the same as for analytic functions.
As in the proof of Theorem 1, we will derive the inequality (17) first for a = 0,

then deduce the general result by Möbius invariance. Because of Möbius invariance,
we may assume without loss of generality that ϕ(0) = 0 and |ϕ′(0)| = 1. Consider
the inverted curve

Φ(x) =
ϕ(x)

|ϕ(x)|2 , with |Φ′(x)| =
|ϕ′(x)|
|ϕ(x)|2 ,

as a straightforward calculation of |Φ′(x)|2 shows. By Möbius invariance, S1Φ =
S1ϕ. Recall that if g(x) is a real-valued function with g′(x) > 0, the function
u(x) = g′(x)−1/2 satisfies the differential equation u′′ + 1

2
(Sg)u = 0. Thus if we

take g(x) = s(x), the arclength function along the curve Φ(x), we see that the
function

u(x) = |Φ′(x)|−1/2 =
|ϕ(x)|

|ϕ′(x)|1/2

satisfies u′′+ 1

2
(Ss)u = 0 and has initial data u(0) = 0 and u′(0) = 1, since ϕ(0) = 0

and |ϕ′(0)| = 1. But

Ss(x) ≤ S1Φ(x) = S1ϕ(x) ≤ 2(1 + δ2)

(1 − x2)2
,

so it follows from the Sturm comparison theorem that u(x) ≥ v(x) for 0 ≤ x ≤
tanh(π/δ), where v(x) is the function given in (10). In terms of the hyperbolic
metric, this last inequality takes the form

∆ϕ(0, x) ≥ 1

δ
sin(δ d(0, x)) , d(0, x) ≤ π/δ ,

which is the desired result (17) for a = 0. The general inequality (17) is deduced
from this special case by Möbius invariance. �

With the help of Theorem 2, we can now derive a two-point distortion inequality
for the canonical lift of a harmonic mapping to a minimal surface. A harmonic
mapping is a complex-valued harmonic function f(z) = u(z)+iv(z), for z = x+iy in
the unit disk D of the complex plane. Such a mapping has a canonical decomposition
f = h + g, where h and g are analytic in D and g(0) = 0. The basic properties of
harmonic mappings are described in [11].

According to the Weierstrass–Enneper formulas, a harmonic mapping f = h + g
with |h′(z)| + |g′(z)| 6= 0 lifts locally to a minimal surface described by conformal
parameters if and only if its dilatation ω = g′/h′ has the form ω = q2 for some
meromorphic function q. The Cartesian coordinates (U, V, W ) of the surface are
then given by

U(z) = Re{f(z)} , V (z) = Im{f(z)} , W (z) = 2 Im

{∫ z

0

h′(ζ)q(ζ) dζ

}
.
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We use the notation f̃(z) =
(
U(z), V (z), W (z)

)
for the lifted mapping from D to

the minimal surface. The first fundamental form of the surface is ds2 = λ2|dz|2,
where the conformal metric is λ = |h′| + |g′| .

For a harmonic mapping f = h + g with λ(z) = |h′(z)| + |g′(z) > 0, whose
dilatation is the square of a meromorphic function, the Schwarzian derivative is
defined by the formula

Sf = 2
(
σzz − σz

2
)
, σ = log λ .

If f is analytic, it is easily verified that Sf reduces to the classical Schwarzian.
In a previous paper [3], the following criterion was given for the lift of a harmonic

mapping to be univalent.

Theorem B. Let f = h + g be a harmonic mapping of the unit disk, with λ(z) =
|h′(z)| + |g′(z)| > 0 and dilatation g′/h′ = q2 for some meromorphic function q.

Let f̃ denote the Weierstrass–Enneper lift of f to a minimal surface with Gauss

curvature K = K(f̃(z)) at the point f̃(z). Suppose that the inequality

|Sf(z)| + λ(z)
2|K(f̃(z))| ≤ 2

(1 − |z|2)2

holds for all z ∈ D. Then f̃ is univalent in D.

If f is analytic, its associated minimal surface is the complex plane itself, with
Gauss curvature K = 0, and the result reduces to Nehari’s theorem.

In the paper [6], Theorem B was sharpened to express the univalence in the
form of a two-point distortion condition. It was shown in [4] that if the bound

2(1 − |z|2)−2 is weakened to 2(1 + δ2)(1 − |z|2)−2, then f̃ is uniformly locally
univalent, the analogue of B. Schwarz’ extension of Nehari’s theorem. We now
express the uniform local univalence in quantitative form, thus obtaining a harmonic
analogue of the lower bound (7) in Theorem 1. Let

∆ ef (α, β) =
|f̃(α) − f̃(β)|

{(1 − |α|2)λ(α)}1/2 {(1 − |β|2)λ(β)}1/2
, α, β ∈ D ,

where λ is the conformal metric of the minimal surface. With this notation, we are
prepared to state the theorem.

Theorem 3. Let f = h + g be a harmonic mapping of the unit disk, with λ(z) =
|h′(z)| + |g′(z)| > 0 and dilatation g′/h′ = q2 for some meromorphic function q.

Let f̃ denote the canonical lift of f to a minimal surface. Suppose that

|Sf(z)| + λ(z)
2|K(f̃(z))| ≤ 2(1 + δ2)

(1 − |z|2)2 , z ∈ D . (18)

Then

∆ ef (α, β) ≥ 1

δ
sin(δ d(α, β)) (19)
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for all α, β ∈ D with hyperbolic separation d(α, β) ≤ π/δ. For each pair of points
α, β with 0 < d(α, β) < π/δ, equality occurs in (19) only for harmonic mappings
of the form f = h + c h, with c a constant of modulus |c| < 1 and h = T ◦ F ◦ σ,
where F is defined by (9), σ is the Möbius automorphism of D for which σ(α) = 0
and σ(β) > 0, and T is an arbitrary Möbius transformation. The corresponding
minimal surface is then a plane.

Proof. The proof will apply Theorem 2. The canonical lift f̃ onto a minimal surface

Σ defines a curve f̃ : (−1, 1) → Σ ⊂ R
3. As shown in [3], the Ahlfors Schwarzian

of this curve satisfies

S1f̃(x) = Re{Sf(x)} + 1

2
λ(x)2κe(f̃(x))2 + 1

2
λ(x)2|K(f̃(x))|

≤ Re{Sf(x)} + λ(x)2|K(f̃(x))|
≤ |Sf(x)| + λ(x)2|K(f̃(x))| , −1 < x < 1 ,

(20)

where κe(f̃(x)) denotes the normal curvature of the curve at the point f̃(x). Thus

the hypothesis (18) tells us that S1f̃(x) ≤ 2(1 + δ2)(1− x2)−2, and so by Theorem
2 we have the inequality

∆ ef (a, b) ≥ 1

δ
sin(δ d(a, b)) (21)

for all a, b ∈ (−1, 1) with d(a, b) ≤ π/δ, since |f̃ ′(x)| = λ(x).
In order to extend the inequality (21) to arbitrary points α, β ∈ D, we appeal

again to Möbius invariance. Observe first that the quantity ∆ ef
(α, β) is invariant

under precomposition with Möbius automorphisms of the disk. Indeed, if σ is
any such automorphism, the composition F = f ◦ σ is a harmonic mapping with

canonical lift F̃ = f̃ ◦ σ and conformal metric Λ(z) = λ(σ(z))|σ′(z)|. Combining
this with the identity (6), we see that ∆ eF (α, β) = ∆ ef

(σ(α), σ(β)). Given any pair

of points α, β ∈ D, choose σ so that σ(a) = α and σ(b) = β for some a, b ∈ (−1, 1).
In view of (6), the hypothesis (18) is also Möbius invariant, and so ∆ eF (a, b) ≥
1

δ sin(δ d(a, b)), by what we have already proved. But d(a, b) = d(α, β) by Möbius
invariance of the hyperbolic metric, whereas

∆ eF (a, b) = ∆ ef (σ(a), σ(b)) = ∆ ef (α, β) .

Therefore, the inequality (19) holds for all points α, β ∈ D with d(α, β) ≤ π/δ.
We now turn to the case of equality in (19) for two distinct points α, β ∈ D

with d(α, β) < π/δ. After precomposing with an automorphism of the disk, we
may assume that α = 0 and β = r with 0 < r < π/δ. More precisely, if σ is the
automorphism with σ(α) = 0 and σ(β) = r > 0, we need only consider equality for

functions f1 = f ◦ σ−1 at the points 0 and r. Let ϕ(x) = f̃1(x) denote the lifted
curve on the corresponding minimal surface Σ. With the notation in the proof
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of Theorem 2, we see that equality in (19), namely ∆ ef1

(0, r) = 1

δ
sin(δ d(0, r)), is

equivalent to u(r) = 1

δ
sin(δ d(0, r)), which by the Sturm comparison theorem can

occur only if

Ss(x) = S1ϕ(x) =
2(1 + δ2)

(1 − x2)2
for all x ∈ [0, r] . (22)

But in view of (16), the equality Ss(x) = S1ϕ(x) implies that the curvature κ(x) of
the curve ϕ vanishes for all x ∈ [0, r], and so that portion of the curve is a straight
line in space. On the other hand, because of (20) and the hypothesis (18), the
equality S1ϕ(x) = 2(1 + δ2)(1 − x2)−2 implies that the normal curvature has the
property κe(ϕ(x))2 ≡ |K(ϕ(x))| on [0, r] , so that the corresponding portion of the
curve is a line of curvature of Σ. (Here we use the fact that Σ is a minimal surface,
with zero mean curvature.) But by uniqueness in the Björling problem (cf. [10]),
a minimal surface containing a straight line segment as a line of curvature must
reduce to a plane. Therefore, as shown in [2], the harmonic mapping f1 has the
form h1 + c h1 for some locally univalent analytic function h1 and some constant c
with |c| < 1. It is then easily seen that Sf1 = Sh1. Furthermore, since the surface
Σ is a plane, it has Gauss curvature K = 0, and so (22) combines with (20) and
(18) to show that

Sh1(x) = Sf1(x) = S1f̃1(x) =
2(1 + δ2)

(1 − x2)2
for all x ∈ [0, r] .

But Sh1 is an analytic function, so this implies that Sh1(z) = 2(1 + δ2)(1 − z2)−2

for all z ∈ D. Therefore, h1 = T ◦ F , where T is a Möbius transformation and F
is a particular function (as given by (9), for instance) with Schwarzian SF (z) =
2(1 + δ2)(1 − z2)−2. Hence f = f1 ◦ σ = h + c h, where h = T ◦ F ◦ σ, as claimed.
The argument also shows, as in Theorem 1, that the same functions f give equality
along the entire hyperbolic geodesic through α and β. �
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